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ABSTRACT

The Feature-Aided Tracker (FAT) system was developed at MIT Lincoln Laboratory
as an addition to a simple kinematic tracker. The goal of FAT is to use high resolution
information about a target’s characteristics to aid both in the tracking and identification of

targets.
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1. INTRODUCTION

The Feature-Aided Tracker (FAT) system was developed at MIT Lincoln Laboratory as an addition
to a simple kinematic tracker [1]. The goal of FAT is to use high resolution information about a target’s
characteristics to aid both in the tracking and identification of targets.

An example of the type of problem FAT was designed to solve is illustrated in Figure 1. When two
targets first converge toward a common point and then diverge after it, a kinematic tracker alone cannot
reliably determine the path followed by each target.

Figure 1. Kinematically ambiguous target motion example.

This report discusses the Feature-Aided Tracking component of the Integrated Radar-Tracker (IRT)
application for the DARPA/IPTO PCA program. Only the portions specific to FAT will be discussed here.
Descriptions of the portions of FAT common with a simple kinematic tracker can be found in [1]. An
overview of the entire IRT application can be found in [3].

1.1 FEATURE-AIDED TRACKING—HIGH LEVEL DESCRIPTION

Feature-Aided Tracking uses one-dimensional High Range Resolution (HRR) profiles gathered for
each target to improve the association likelihoods (referred to as x? scores) generated by the kinematic
tracker (see Figure 2). FAT has two components which may be used. Classification-Aided Tracking (CAT)
compares incoming HRR profiles with profiles from a template class database. Signature-Aided Tracking
(SAT) compares incoming HRR profiles with the HRR profile for the track’s last associated measurement.




A weighted Mean Squared Error (MSE) metric is used for all HRR pattern matching operations. FAT may
use either CAT, SAT, or both (using neither is essentially kinematic tracking).
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Figure 2. Feature-Aided Tracker logical flow diagram (FAT only components in white, kinematic tracker common
components in gray).




1.1.1 Classification-Aided Tracking (CAT)

CAT is performed by forming a vector of MSE scores for the hypothesized target/track pair under
consideration against all known classes within the template database. The minimum MSE score against
templates within a given aspect angle range (nominally +10°) of the target is used. A Bayesian classifier is
then used on each MSE vector to determine the probability that each given hypothesized pair is one of the
known target classes or an unknown class. This information is then used to compute an adjustment for the
x? score from the kinematic tracker.

CAT has the benefit of providing information about the type of object being tracked. Another
positive point is providing greater accuracy and robustness for known target types. The requirement to gain
these benefits from CAT is prior knowledge of target classes for the database. CAT may or may not be
helpful in tracking for unknown target types (depending upon their characteristics and the characteristics of
the known target classes) and cannot be used to identify unknown target classes. CAT also requires a
significantly larger amount of processing than simple kinematic tracking or SAT.

1.1.2 Signature-Aided Tracking (SAT)

SAT is performed by taking the MSE comparison between the incoming target’s HRR profile against
the track’s stored HRR profile for the hypothesized target/track pair. This information is then used to
compute an adjustment for the 2 score from the kinematic tracker.

SAT has the benefit of requiring no prior knowledge of any target types. Also its processing
requirements are relatively small compared to CAT. The largest disadvantage for SAT is that HRR profiles
are not generally smooth across aspect anglel. As the aspect angle of an object changes, there will be
points of discontinuity when new objects become part of the one-dimensional projection towards the radar.
The result of this is less accuracy at unpredictable points. A system designer may attempt to bound the
unpredictability by such methods as setting an aspect angle change threshold for the use of SAT, but no
solution can be perfect.

1.2 PARAMETERS

This section explains parameters which are needed as inputs and controls for the operation of FAT.
As shown in Figure 2, a tracker works as a loop-back system, where the output for one scan may be taken
as the input for the next scan, therefore the output will also be discussed. The input and output parameters
are a superset of those required for the kinematic tracker. Some control parameters are common to the two
systems as well.

! To simplify the code and allow constant SAT processing, the patterns in the sample data are smooth across aspect
angle.




1.2.1 Input Parameters

FAT requires two input structures, a target report list and the track list output by the previous scan.
The target report list will be signified by the one-dimensional array M[], and indices into M[] will be
generally signified by “M_Idx” or M_Idx. The parameters shown in Table 1 are the inputs to the
kinematic tracker from an external system (test data system or a radar). Shaded rows of Table 1 are inputs
used primarily by the kinematic tracker (so their results are used by FAT, but they are not directly used).

The track list will be described in Section 1.2.2.

TABLE 1
Data Input To Tracker (rows in gray for primarily kinematic tracker input)
Parameter : Lo
name | Explanatlorg\ 5 =
rg Range position of target. The kinematic fracker uses this to determine
ground position.
az Azimuth position of target. The kinematic tracker uses this to
determine ground position.
dop Radial velocity of target. The kinematic tracker uses this to estimate
target velocity vector.
time Time stamp for when this detection was made.
snr Signal-to-noise ratio (SNR) of detection. This is a measure of the
relative strength of the target detection.
hrr High Range Resolution profile for target. This is the “pattern” FAT uses
for the incoming target for all pattern matching operations.

1.2.2  Output Parameters

The output is also in the form of an array of structures called the track list. It will generally be
referred to as the one-dimensional array T[], and indices into T [] will generally be signified by “T_Idx”
or T_Idx. The purpose of the track list is two-fold. One is as the output to a user; the other is as loop-back
input to the tracker. Table 2 outlines data members of T [] which are relevant outside the current scan of
the tracker (either to user or to next tracker scan). Shaded rows of Table 2 are not directly related to FAT,

but to the kinematic tracker.




TABLE 2

Data Output from Tracker (rows in gray are of only indirect interest to FAT)

Parameter name . Explanation. - 0
snr SNR of last target report associated with this track. This
is a measure of the relative strength of that target
detection.
) Pp Extrapolated process noise covariance matrix. This is
used only by the kinematic tracker (primarily by the
- Kalman filter).

status {New, Novice, Established}

time Time stamp for the last target report associated with this
track.

x Estimated x-coordinate of target at time time.

3% Estimated y-coordinate of target at time time.

x_dot Estimated velocity of target in the x direction at time
time. ]

y_dot Estimated velocity of target in the y direction at time
time.

Hypothesis Kinematic movement model hypothesized for last target/
track association for this track. Used to determine
degrees of freedom for merging x> scores.

classificationVector Classification vector from CAT. A vector of probabilities
that the track belongs to each known class as well as to
an unknown class.

hrr High Range Resolution profile for last target report
associated with this track. This is the “pattern” FAT uses
for the track when performing SAT.

1.2.3 Control Parameters

FAT uses many control parameters. In the implementation, these are part of a structure (see Section
3.4). For the purpose of algorithmic descriptions, they will be treated as separate values. Parameters
important to the algorithmic description or general conceptual understanding are listed in Table 3.




TABLE 3

Control Parameters for the Feature Aided Tracker

MaxNumReports Maximum number of target reports allowed (necessary
only for real-time bound or worst case analysis of memory
restrictions of actual implementations). This parameter is
not enforced in the Matlab implementation.

MaxNumTracks Maximum number of tracks allowed (necessary only for
real-time bound or worst case analysis of memory
restrictions of actual implementations). This parameter is
not enforced in the Matlab implementation.

UsingCAT Turn on or off Classification-Aided Tracking.

UsingSAT Turn on or off Signature-Aided Tracking.

NumClasses Number of classes known by CAT template database.

NumOtherClasses Number of classes generated for use in creating “other”
target statistics for CAT.

HRRPixels Number of samples in HRR profile.

MatchMu Mean MSE score for matching HRR profiles in SAT.

MismatchMu Mean MSE score for HRR profiles not matching in SAT.

MatchVar Variance of MSE scores for matching HRR profiles in SAT.

MismatchVar Variance of MSE scores for HRR profiles not matching in
SAT.

PriorClamp Value used in place of zero for prior probabilities (zero
causes failure to ever consider possibility again).

AspectScan Assumed potential aspect angle estimation error for use in
choosing template profiles from CAT database.

ShiftRatio Indicates degree to which HRR profiles may be shifted in
range to find the minimum MSE score.

MagDBLow Lowest magnitude power scaling to find the minimum MSE
score.

MagDBHigh Highest magnitude power scaling to find the minimum MSE
score.

MagDBStep Step size for determining values between MagDBLow and

MagDBHigh to examine.

default_prior

Size (NumClasses + 1) vector of probabilities to use as
default for new tracks.




2. FUNCTIONAL OVERVIEW

This section will cover the basic functionality required specifically for FAT. Figure 3 illustrates
FAT’s internals in slightly greater detail than shown in Figure 2. Note that this picture differs from Figure 2
in that the Munkres Algorithm is shown here where it is actually performed, within FAT. This
implementation eases the updating of some FAT-specific data elements. Figure 2 is a conceptual overview
of the manner in which FAT functions, where Figure 3 reflects more precisely the details of the provided
implementation.
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Figure 3. FAT logical block diagram (kinematic tracker portions in gray).




Functionality shared with the kinematic tracker (including the Munkres Algorithm) has been
described in the kinematic tracker’s documentation [1]. Implementation choices will be discussed in

Section 4.

2.1 COMPUTE MSE SCORE [calculateMSE()]

Input: An HRR profile under test (size 1xHRRPixels) and a database of an arbitrary number of HRR
templates (each size 1xHRRPixels).

Output: A floating point number indicating the minimum MSE score for the test profile against all
template profiles.

All pattern matching for CAT and SAT use a weighted MSE metric as specified below.

HRRPixels
2
> wilty=hy)

: — k=1
weighted MSE = T M

DI

k=

where
* w, is the weight for the kth pixel
» t, is the magnitude of the kth pixel in the track history HRR profile
* h, is the magnitude of the kth pixel in the target HRR profile

Each weight w, is computed as

w, = 1—pr,Xpt; )
where
1 1,2
e { 0 otﬁerwge , @
pt = ge ", @

and 1 is the clutter power level.




An HRR profile collected by a sensor may be translated in range or power compared to the stored
template sample. The optimal values for [range] shift and [power] gain are found through brute force
comparisons, returning the minimum MSE score. Due to the fact that the MSE metric forms a parabolic
function of shift and gain, optimum values may be found by shifting first the range and then finding the
optimal power gain for the resulting minimum (see Figure 4).

gain adjustment

iso-MSE contours

\
]

2. find optimal gain adjustment

[
i

shift amount

s

1. find optimal shift amount

Figure 4. Two-step method for finding minimum MSE score.

This explanation is for performing a single MSE comparison between two HRR profiles. Performing
multiple comparisons is essentially done by performing this multiple times, though some results may be re-
used depending upon implementation (shifted profiles for testing are re-used for the supplied Matlab
version).

2.2 CLASSIFICATION-AIDED TRACKING (CAT)

Input: A target report’s HRR profile (size 1xHRRPixels), the prior probabilities (size 1xNumClasses+1)
for the track hypothesizing association, and the estimated aspect angle for the association.

Output: A X2c47 value for the hypothesized track/target pair and a set of posterior probabilities (size
1xNumClasses+1) for the hypothesized association.




Classification-Aided Tracking performs a comparison between an incoming target report and the
profiles stored in a database. The comparison must be performed for each track/target pair, as opposed to
only for each target, because the method for estimating aspect angle requires an associated track?. CAT
calculates a vector of MSE scores (see Section 2.2.1) which are then used by a Bayesian classifier to
attempt to clarify target classification (see Section 2.2.2). Using the Probability Density Function (pdf)
output from the Bayesian classifier and the track’s prior probabilities vector, ch 47 is computed as
follows:

%2 c4r(T_ldx, M_Idx) = -In (pdf - prior) 5)

where “4 - B” indicates the vector inner product of 4 and B.

For any parameter set chosen, CAT will require the largest share of the tracker’s processing. For
nontrivial parameter sets, CAT will dominate the processing by a large margin (easily over 95% of the total
operation count). Which component dominates depends upon the parameter set. For all parameter sets we
have investigated, MSE vector calculation dominates (more than three quarters the total operation count
for FAT). However, if the number of known target classes is increased while other parameters are left
alone, the Bayesian classifier will dominate. This is because MSE vector calculation is linearly dependent
upon three major parameters (number of known classes, number of hypothesized pairs examined, and
number of distinct aspect templates to examine) while the Bayesian classifier’s major dependence is on the
number of classes to the fourth power. In a real-world system, for the Bayesian classifier to dominate
computationally, this would imply that FAT is using a database with a large number of targets but poor
aspect resolution to examine a small number of widely spread targets. For most cases of interest, it is safe
to consider MSE vector computation FAT’s computational driver.

2.2.1 Calculate MSE Vector [computeMSEvector ()]

Input: A target report’s HRR profile (size 1xHRRPixels) and the estimated aspect angle for the
association.

Output: A vector of MSE scores (size 1xNumClasses) for the hypothesized association’s score against
known target classes (named MSEVec in the pseudocode below).

With the parameters and scenarios provided, this function is responsible for more than three quarters
of FAT’s processing. The reason is that for each scan, an MSE score computation (as described in Section
2.1) must be computed for each associated pair against each template class at each possible aspect angle
stored in the database. For each hypothesized pair and each template class, the minimum score within the
considered aspect angle range will be returned.

2 Aspect angle is assumed to match velocity vector direction. This estimate is obtained by running the hypothesized
pair through a Kalman filter [1] and using the resulting velocity vector.

10




A Matlab pseudocode outlining the logical calculation of all MSE vectors is given below.

for each track T_Idx
for each possibly associated target report M_Idx
Aspect= estimated aspect for pair (T _Idx,M Idx);
¢BEGIN MSEVector CALCULATION HERE
for each template class C_Idx
S= arbitrary large number
for each profile within A4spectScan of Aspect A Idx
R=calculateMSE(M(M Idx) .hrr,
Template (C_Idx,A Idx));
S=min(S,R);
end
MSEVec (C_Idx)=S;
end
$£END MSEVector CALCULATION HERE
All MSEVec{T_Idx,M Idx}=MSEVec;
end
end

The provided implementation is discussed in Section 4.

This function is also the primary point of convergence between the tracker portion of the IRT and the
kemels described for the PCA program in Project Report PCA-KERNEL-1 [4]. FAT’s
calculateMSE () function was simplified to formulate the pattern matching kernel. Given the massive
number of MSE scores to calculate, an efficient pattern database optimized to retrieve aspect angle ranges
for given classes could provide great benefit.

2.2.2 Bayesian Classifier [computeBayes ()]

Input: A vector of MSE scores (size 1xNumClasses) for the hypothesized association’s score against
known target classes, the prior probabilities (size 1xNumClasses+1) for the track, and the estimated aspect
angle for the association.

Output: A probability density function (pdf) vector (size 1xNumClasses+1) and a posterior probability
vector (size 1xNumClasses+1) describing the hypothesized association’s chances of being one of the
known classes or a completely unknown class.

Bayes’ theorem for an exhaustive list of mutually exclusive events (such as a target being either one
of NumClasses distinct classes or none of them, represented by A; below) may be stated generally as
follows:

11




P(4,)P(B|4);)
N
" P(4,)P(B|4))
i=1
where P(X) indicates the probability of X and P(Y|Z) indicates the probability of Y if Z is given/observed
[2].

©

P(4,|B) =

Substituting in specific values for FAT would give the following:

P(Class;)P(MSEVec|Class;)

NumClasses + 1
z P(Class;)P(MSEVec|Class;)

i=1

(M

P(Classi|MSEVec) =

where Classy,,,ciasses +1 indicates the “other” class, signifying any target class which is not
represented by a template in the database.

The track’s stored prior probabilities3 indicate the probability of the hypothesized association being
a given class (or P(Class;), Vi). The probability that a given class would yield the MSE vector input (or
P(MSEVec|Class,)) is obtained from the following function:
1

-5 Ax; - Cov,_1 . Ax,T

P(MSEVec|Class;) = — 4 ®)
J@n )NumClassesdet( COVI-)

where Ax; is the difference between the given MSE vector and mean MSE vector for Class;, Cov; is
the stored covariance matrix for MSE vectors observed from Class;, det(A) indicates the determinant of
matrix A, and Classy,,,.classes + 1 indicates the “other” class.

The vectors given by collecting all values of P(MSEVec|Class;) and P(Classi|MSE Vec) are
returned as the pdf and posterior probabilities, respectively.

3 Prior probabilities indicate the probability of an event given no additional knowledge. In the case of FAT, a track’s
prior probabilities indicate the probability that the track indicates a target of each known class and the “other” (or
unknown) class without taking into account HRR information from the current scan. Posterior probability is the
probability estimate after taking the current scan’s information into account.

4 A slightly different implementation was used for numerical stability. This will be discussed in Section 4.
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2.3 SIGNATURE-AIDED TRACKING (SAT)

Input: The HRR profile (size 1xHRRPixels) associated with the track and the HRR profile (size
1XHRRPixels) associated with the target report for the hypothesized association pair.

Output: A 2,7 value for the hypothesized track-target pair.

Signature-Aided Tracking performs a direct comparison between an incoming target and a saved
track. Depending upon the HRR profiles’ expected smoothness across aspect angle, a limit may be
imposed on what pairs SAT operates upon, though this is omitted in the provided implementation due to
the use of HRR profiles changing smoothly over aspect. The believed statistical likelihoods of receiving
the returned MSE score are used to generate the probability density of a match or mismatch. The
probability densities are then used to calculate the % 2,7 adjustment as shown below.

%25 47(T_Idx, M_1dx) = -In (Match_pdf / Mismatch_pdf) )

where

1 (hr_mse— MatchMu)?
2 MatchVar

Match_pdf = < , (10)

J2nMatchVar

_1 (hrr_mse — MismatchMu)?
e 2 MismatchVar
Mismatch_pdf = R (11)
S2rMismatchVar

and

hrr_mse = log (calculateMSE(M(M_Idx).hrr_profile, T(T_Idx).hrr_profile)) (12)

for hypothesized track/target pair (T(T_Idx),M(M_Idx)) and using the MSE calculation outlined in Section
2.1.

2.4 MERGE > SCORES
Merging the %2 scores from the kinematic tracker with y%g,7 and X2 cur is performed through a

simple addition. In a real system, other adjustments of the various X2 scores might be placed here as well.
Currently some adjustments are made to x2 scores based upon what hypothesis the kinematic tracker

13



chose. It may be desirable to scale the three %2 scores to a similar order of magnitude, and that scaling
would be performed at this stage in the code.

2.5 POST-MUNKRES OPERATIONS [compute track_diffusion()]

Input: Saved posterior probability vectors for all track/target pairs, final xz F4T Matrix.
Output: Updated prior probabilities for each track on the next scan.

All FAT-specific data elements, save the track’s prior probabilities, are updated through simple
assignments. The updated prior probabilities for the track provide not only input for the next scan, but also
output information for the overall system. Because it should be considered possible that the right
association was not made (perhaps due to a target not being detected in the current scan), the updating of
priors for the next scan should take into account all possibilities and not only the final chosen association.
This is done by comparing the magnitudes of the potentially associated xz scores in the following manner:

I/XZFAT(T_IdX, l)
T2

T.Priors = Z - T.PosteriorSaved (i) 13)

Vi e PotentialAssoc(T Idx)

where

Ty = Z 1/%2p47(T_Idx, 0). (14)
Vi € PotentialAssoc(T Idx)

14




3. DATA STRUCTURES

A variety of data structures are used in FAT, many of them shared with the kinematic tracker. Below
is a description of their actual structure. These definitions will be given in a C style to clearly indicate data
types and sizes. (Note that, in C, pointers are generally used to declare dynamically resizable arrays.)

3.1 TARGET REPORTS

The structure for target reports is simple and mostly used by the kinematic tracker as opposed to FAT
(only the HRR profile is used by FAT alone). The global list of target reports has been referredtoas M[] in
this document, and indices for specific locations have been given the name M_Idx (indices solely for
looping may use other names). The centroid structure contains the information which is actually passed
from a radar system to the tracker and will be saved as a data member of elements of M[], which stores
additional information derived from the centroid structure’s information (such as cosine of the azimuth
angle).

struct target_ report

{

struct centroid cent; //contains original info passed

// in from MTI
double Range; //These three parameters are the
double Azimuth; // ground values of rg, az, & dop
double Doppler; // in cent (the values in cent

// may be absolute or may be
// indices).

double sin az; //sine of the azimuth angle
double cos_az; //cosine of the azimuth angle
double sdsqgd; //doppler variance (in m/s)
double abs_dop; //corrected doppler (in m/s)
double R[2] [2]; //measurement (X,y) covariance

// matrix

15




struct centroid

{

int rg;

int az;

int dop;
double time;

double snr;
double hrr [HRRPixelg];

//range gate index or absolute

// range in meters for this

// target

//clutter-nulled beam index or

// absolute azimuth angle in

// radians for this target

//doppler bin index or absolute .
// doppler in m/s for this target
//time stamp associated with

// this target

//SNR for this target

//vector containing the HRR

// profile for this target

//additional members to be populated by the tracker
// all this information should be redundant with the

// above info.
double x;
double y;

}

3.2 TRACK

//x coordinate of this target
//y coordinate of this target

The track structure is a simple structure, the majority of which is used for only the kinematic tracker.
The global list of which has been referred to in this document as T [1 and indices for specific locations
have been given the name T_Idx (indices solely for looping may use other names). This structure is used
both as output and input, though only a subset of the structure is required in the following scan.




struct track history

{

char status|];

double

double

double

double

double

double
struct

struct

struct

X _pos;
Y_pos;
x vel;
y _vel;
snr;

time;
VelWindow vw[5];

CVHFilter cvhi;

//string containing status
// (enum should be used in
// compiled implementation)
//x coordinate of estimated
// position of track

//y coordinate of estimated
// position of track
//estimated x direction

// velocity of track
//estimated y direction

// velocity of track

//snr from last associated
// target

//time from last target
//represents different

// possible actual doppler
// values, used in resolv-
// -ing doppler ambiguity
//Abstraction from original
// system, may be removed.

target report Msave[5];

char Hypothesis|[];

double

double

double

double

double

Q4] [4];
Pm[4] [4];
Pp[4] [4];
K1[4] [2];

K2[4] [1];

//saves old targets for

// New/Novice tracks until
// they become established
//string containing

// hypothesis (enum should
// be used in compiled

// implementation)
//process noise covariance
// matrix

//initial extrapolation

// covariance matrix
//updated extrapolation

// covariance matrix
//Kalman gain stage 1

// matrix

//Kalman gain stage 2

// matrix

17




// New for FAT
double hrr [HRRPixels];

double priors[NumClasses+1];

double **posteriorSave;

double *CAT X2 Save;

double

double cum_assoc;
int TMAindex;

struct target report assoc;
double Chisqgd;

double SAT X2 Save;

}

struct VelWindow

{

int active;

double
double
double

xdot ;
ydot ;
xdotvar;

double ydotvar;

double xydotvar;

//HRR profile from last

// associated target

//Prior probabilities for

// each class & ‘other’ for

// the track

//Location to save the

// posterior vectors for

// each possible target .
// association

//saves CAT X2 for each

// possible association '

classificationVector [NumClasses+1]

//Output to user which

// indicates current belief
// of track’s class

//sum of track’s CAT X2
//index of last associated
// target report

//copy of last associated
// target report

//X"*2 value for last

// association

//SAT X2 value for last

// association

//indicates state of this
// velocity window

//x direction velocity
//y direction velocity
//variance in x direction
// velocity
//variance in
// velocity
//covariance between x and
// y velocities

y direction

18




struct CVHFilter

{

double x; //% coordinate
double y; //y coordinate
double =xdot; //x velocity
double ydot; //y velocity

}

3.3 ASSOCIATION MATRICES

These matrices are simply f X m matrices, where ¢ is the length of the global track list (T [1) for the
current scan and m is the length of the global target report list (M []) for the current scan. Because the sizes
of these lists may change from scan to scan, the dimensions of these matrices also may change. There will
be seven matrices of this size. For simple kinematic tracking, the matrices are Assoc, Hyp, and Kin_X2.
For FAT, the additional matrices CAT X2, SAT X2, DegFreedom, and FAT_ X2 are also used. A
dynamically resizable matrix in C is represented by a double pointer. Due to the fact that a string in C is
usually represented by a char*, a matrix of strings will be represented as a triple pointer. A matrix of
arrays would also be represented as a triple pointer.

bool **Assoc; //T/F matrix based on geographic and
// kinematic feasibility
char* **Hyp; //matrix of strings keeping track of

// which hypothesis was last chosen

// (enum should be used in compiled

// implementation)
double **Kin X2; //contains X*2 values for kinematic

// tracker
double **CAT X2; //contains X*2 adjustments from CAT
double **SAT X2; //contains X"2 adjustments from SAT
int **DegFreedom; //used to normalize Kin X2 scores

// according to Hyp and FAT adjustments
double **FAT X2; //contains final/merged X*2 wvalues
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3.4 FAT PARAMETERS

This simple structure stores control parameters set during initialization. Kinematic tracker
parameters needed by FAT are duplicated within this structure. None of these parameters are expected to
change after initialization.

struct FATParameters

{

// basic/common FAT parameters

bool UsingCAT; //Turn CAT on/off
bool UsingSAT; //Turn SAT on/off
int HRRPixels; //HRR vector size
// parameters for calculateMSE()
double ShiftRatio; //Relative amount to poten-
// tially shift HRR profile
double MagDBLow; //Low power scaling
double MagDBStep; //Power scaling delta
double MagDBHigh; //High power scaling
// Statistics used by SAT
double MatchMu; //Mean of logl0 of MSE score

// from HRR profiles for
// matching targets

double MismatchMu; //Mean of logl0 of MSE score
// from HRR profiles for
// differing targets

double MatchVar; //Variance of logl0 of MSE
// score from HRR profiles
// for matching targets

double MismatchVar; //Variance of logl0 of MSE
// score from HRR profiles
// for differing targets

// CAT control parameters

int NumClasses; / /Number of known classes
bool TrackDiffusion; //Turn on or off updating of
// prior probabilities
double PriorClamp; //Minimum probability
// allowed in a prior
int NumSectors; //Number of sectors used to
// consider areas of object
int AspectScan; //Degrees off aspect

// estimate to examine for a
// match




double default prior[NumClasses+1];
//Default prior probability
// Parameters used for degree of freedom calculation
// in X*2 fusion

double DF Tag; //Used for pairs with zero
// degrees of freedom
int NumChiSqgd; //Number of values in X*2

// distribution
// legacy parameters from kinematic tracker

double PlatformXPos; //X position of radar by the
// XY grid used with targets
double InvalidChiSqd; //X*2 value to indicate an

// impossible pairing
// Parameters for the profile generator used for
// perfect data

double HRRGenProfileHi; //High/peak wvalue
double HRRGenProfilelo; //Low/valley value
double HRRGenNoiselevel; //Radar noise level
// Profile database generator parameters
bool CreateDB; //Turn on/off database
// generator
int NumOtherClasses; //Number of classes past

// NumClasses to uge for
// creating statistics for
// unknown classes
double AspectEvenDist; //Distance used between
// aspect measurements for
// evenly distributed
// template databases
double AspectMinDist; //Minimum distance used
// between aspect measure-
// ments for unevenly
// distributed template
// databases
double AspectMaxDist; //Maximum distance used
// between aspect measure-
// ments for unevenly
// distributed template
// databases
double CovEigDynRgLimit; //Limit used for covariance
// matrix diagonal loading
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double MinCovDet;

double MinDiagLoad;

int FileAngleExtent;
char* TemplateDirectory;

char* StatsDirectory;

double StatSampleMultiplier;

//Desired minimum for co-
// variance matrix

// determinant

//Minimum allowable value
// used for covariance

// matrix diagonal loading
//Granularity for angle
// separation into files
//Directory for template
// database

//Directory for template
// statistics database

// & SAT statistics
//Multiplier by number of
// classes for number of
// samples to use for

// statistic creation

// Parameters relating to parallelization with
// MatlabMPI (see http://www.1ll.mit.edu/MatlabMPI/
// for more information on MatlabMPI)

struct MatMPIComm comm;

int NumProc;
int MyRank;
int MPICmd;

int MSE_Tag;

/ /NOTE:

//

//Structure required by

// MatlabMPI (only used to
// pass to MatlabMPI func-
// tions)

//Number of processes
//Rank of this node

//MPI Tag used to

// indicate a command
//MPI Tag used to

// indicate MSE

// operation to be

// performed

My usage of MatlabMPI tags is not the

recommended manner,
carefully (if at all) as a MatlabMPI example

so should be used
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4. IMPLEMENTATION CONSIDERATIONS

In this section we discuss in more detail three features of the Matlab implementation and relate them
to implementations on actual PCA hardware. The first consideration brought up is a combination of clarity
and efficiency for joining FAT with the kinematic tracker. The majority of the section focusses on the area
around MSE vector computation, due to the fact that this is where the majority5 of computation time is
spent. The last paragraph discusses reduction in the computation time required for the Bayesian classifier.

The logical view of FAT (shown in Figure 2) is appropriate to understanding how the overall
tracking system operates. However, in terms of actual functional implementation, it is simpler to call the
Munkres Algorithm from within FAT as opposed to immediately after it (as shown in Figure 3). It would
be possible to separate the current FAT function into two separate FAT functions which would be called
before and after the Munkres Algorithm, or to incorporate these portions of FAT into the kinematic track
updates along with the Kalman filter. In an attempt to keep simplicity of high-level function layout and to
keep the FAT data updating separate from the functions used for the kinematic tracker, the Munkres
Algorithm is performed within FAT (or instead of FAT when running only the kinematic tracker). Different
choices may be desirable for efficiency on specific hardware implementations.

The structure of FAT was changed to facilitate ease of parallelization choice within the
computeMSEvector () function. The logical view shown in the pseudocode in Section 2.2.1 is the way
it was originally structured. The sample implementation restructured the higher level functions to place all
loops within the boundaries of computeMSEvector () and then used the number of template classes as
the parallelization axis as shown in the notional changed pseudocode below.

5 Matlab profiler results with no optimizations have consistently shown MSE vector computation to take a minimum
of 95% of the processing time, and spreadsheet analysis puts it over 75% for the parameters and scenarios examined.

23



for each track T_Idx
for each possibly associated target report M Idx
Aspect= estimated aspect for pair (T _Idx,M _Idx);
Save pertinent info to struct
end
end
$SBEGIN MSEVector CALCULATION HERE
while template classes C_Idx left to process
for each parallel node
Send data for one template class processing
end
for each Pair (T Idx,M _Idx) in input struct
S= arbitrary large number
for each profile within AspectScan of Aspect A Idx
R=calculateMSE (M.hrr, Template (C_Idx,A Idx));

S=min (S,R) ;
end
MSEVec (T__Idx,M__Idx) =S;
end

All MSEVec{:,:}(C_Idx)=MSEVec’;
for each parallel node
Receive MSEVec results for processed class
All MSEVec{:,:}(C_Idx+node_offset)=MSEVec’;
end
end
$END MSEVector CALCULATION HERE

The reason for performing the computation in this manner is that in a real system each parallel node
could possess a local copy of the class(es) it deals with, thus reducing communication. This restructuring,
by placing all loops within the same function, should also ease the changing of parallelization axis among
jmplementations. This parallelization axis flexibility could allow a run-time system to choose different
axes depending upon the resources available. An intelligent fine-grain control system could take advantage
of this loop structure to eliminate duplicate database queries and balance global communication needs.
Such a system could allow a minimum of communication by maximizing the MSE computations made
before new profiles are loaded and minimizing computation by reusing MSE scores as much as possible
for pairs with the same detection report. The sample implementation was parallelized, as in the pseudocode
shown above, but contains none of these advanced features. The revised loop structure should facilitate any
axis of parallelization desired, or the use of multiple axes. If one parallelization axis is obviously the best
choice for a given implementation, it may be desirable to readjust loops within the greater FAT structure
and suitably adjust the boundaries of the computeMSEvector ( ) function.
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To preserve clarity and keep all functionality transparent at a Matlab level, the template profiles
“database” is simply the file system. Each class was separated into files containing ten degrees of aspect
angle results. The value of ten degrees is relatively arbitrary. This system was in no way tuned for
performance. We attempted to keep the system open, flexible, and transparent. However, for performance-
oriented demonstrations, some efficient manner of data storage, or at least data accounting, will be needed.

On a traditional system, the implementation would require either a good database method for pattern
retrieval or would parallelize so each node has all needed template profiles in fast, local storage. A PCA
system could allow a more intelligent orchestration of all data and computation. An “orchestrator” process
may parcel out specific MSE computations to be performed on given nodes, indicate when templates need
to be sent to specific resources, and organize the output to minimize both communication and computation.
The ability to use PCA’s flexibility and “morphing know how” to schedule and synchronize
communication and computation for dynamic problems would be a very impressive display of PCA chip
abilities.

A performance choice made solely on the Matlab side was to use Matlab’s MEX file optimization
for the calculateMSE () function. MEX-files in Matlab are an interface for C code to be compiled to
function as a native Matlab function. It should be noted that the loop-over templates within AspectScan of
the estimated aspect angle and taking the minimum is actually performed within the calculateMSE ()
function and was only listed separately here for clarity of function. We have observed FAT speedups
roughly on the order of 20x by using this MEX file. The Matlab M-file version was renamed to
old_calculateMSE.m and is included as part of the sample implementation.

The computation in the Bayesian classifier has the potential to scale to dominate FAT if the number
of known target classes in the database is increased significantly past the number of hypothesized
associations and templates by aspect angle. There are multiple simple solutions which could be employed
to reduce this computation time. First, we explain the actual operation performed. Using Equation 8,
problems were encountered because the determinant of some of the stored covariance matrices were falling
below Matlab’s minimum real number threshold and being reported as zero. The following function was
used to avoid the determinant:

1 - Cov™. T)
5 (Zlog(elgenvalues(Cov,))+(Ax, Cov, -Ax;)

P(MSEVec|Class,) = < . (15)

/(2n)NumClasses

Equation 15 contains two operations which run cubic in the number of template classes, eigenvalue
computation and matrix inversion. When performed for each class, this gives a dependence on the number
of classes raised to the fourth power. These could be eliminated through more offline computation and
stored data, lowering the highest order term in Equation 15 to square, resulting in a net cubic dependance
upon the number of classes. Other options for likelihood estimation could be relatively easily examined for
goals of computation reduction and numerical stability.
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ACRONYMS

CAT - Classification-Aided Tracking

DARPA/IPTO — Defense Advanced Research Projects Agency/Information Processing Technology Office
FAT -~ Feature-Aided Track[er/ing]

HRR - High Range Resolution

IRT - Integrated Radar-Tracker

MEX - Matlab EXtension

MSE - Mean Squared Error

PCA - Polymorphous Computing Architectures

pdf — Probability Density Function

SAT - Signature-Aided Tracking

SNR

Signal-to-Noise Ratio

CONVENTIONS

The courier font is used for programming code/pseudocode and also quotations (with a reduced font
size).

The logarithm function base 10 is indicated simply by “log,” where the natural logarithm function
(logarithm base e) is indicated by “In.”
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